MakeItFrom.com
Menu (ESC)

SAE-AISI S1 Steel vs. EN AC-42100 Aluminum

SAE-AISI S1 steel belongs to the iron alloys classification, while EN AC-42100 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI S1 steel and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 690 to 1840
280 to 290

Thermal Properties

Latent Heat of Fusion, J/g 260
500
Melting Completion (Liquidus), °C 1500
610
Melting Onset (Solidus), °C 1450
600
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 41
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
41
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 56
1110

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 24 to 64
30 to 31
Strength to Weight: Bending, points 22 to 42
37 to 38
Thermal Diffusivity, mm2/s 11
66
Thermal Shock Resistance, points 21 to 56
13

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.3
Carbon (C), % 0.4 to 0.55
0
Chromium (Cr), % 1.0 to 1.8
0
Copper (Cu), % 0 to 0.25
0 to 0.050
Iron (Fe), % 91.6 to 96.7
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0.1 to 0.4
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 1.2
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 1.5 to 3.0
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1