MakeItFrom.com
Menu (ESC)

SAE-AISI S2 Steel vs. 6018 Aluminum

SAE-AISI S2 steel belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI S2 steel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 670 to 1940
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 44
170
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
44
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.1
8.2
Embodied Energy, MJ/kg 30
150
Embodied Water, L/kg 49
1180

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 24 to 69
28 to 29
Strength to Weight: Bending, points 22 to 44
34 to 35
Thermal Diffusivity, mm2/s 12
65
Thermal Shock Resistance, points 23 to 68
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0.4 to 0.55
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
0.15 to 0.4
Iron (Fe), % 96 to 98.1
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0.3 to 0.5
0.3 to 0.8
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.9 to 1.2
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15