MakeItFrom.com
Menu (ESC)

SAE-AISI S6 Steel vs. S35135 Stainless Steel

Both SAE-AISI S6 steel and S35135 stainless steel are iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI S6 steel and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
79
Tensile Strength: Ultimate (UTS), MPa 670 to 1920
590

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
37
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.3
6.8
Embodied Energy, MJ/kg 33
94
Embodied Water, L/kg 56
220

Common Calculations

PREN (Pitting Resistance) 2.7
37
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 70
20
Strength to Weight: Bending, points 22 to 45
19
Thermal Shock Resistance, points 22 to 64
13

Alloy Composition

Carbon (C), % 0.4 to 0.5
0 to 0.080
Chromium (Cr), % 1.2 to 1.5
20 to 25
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 92.8 to 94.7
28.3 to 45
Manganese (Mn), % 1.2 to 1.5
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.5
4.0 to 4.8
Nickel (Ni), % 0
30 to 38
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 2.0 to 2.5
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.4 to 1.0
Vanadium (V), % 0.2 to 0.4
0