MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. 2014A Aluminum

Both sintered 2014 aluminum and 2014A aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 0.5 to 3.0
6.2 to 16
Fatigue Strength, MPa 52 to 100
93 to 150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 140 to 290
210 to 490
Tensile Strength: Yield (Proof), MPa 97 to 280
110 to 430

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 560
510
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
37
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
85 to 1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
46
Strength to Weight: Axial, points 13 to 27
19 to 45
Strength to Weight: Bending, points 20 to 33
26 to 46
Thermal Diffusivity, mm2/s 51
55
Thermal Shock Resistance, points 6.2 to 13
9.0 to 22

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
90.8 to 95
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 3.5 to 5.0
3.9 to 5.0
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 0.2 to 0.8
0.2 to 0.8
Manganese (Mn), % 0
0.4 to 1.2
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 1.2
0.5 to 0.9
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15