MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. 358.0 Aluminum

Both sintered 2014 aluminum and 358.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 0.5 to 3.0
3.5 to 6.0
Fatigue Strength, MPa 52 to 100
100 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 140 to 290
350 to 370
Tensile Strength: Yield (Proof), MPa 97 to 280
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
520
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 560
560
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
36
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.0
8.7
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
590 to 710
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 13 to 27
37 to 39
Strength to Weight: Bending, points 20 to 33
42 to 44
Thermal Diffusivity, mm2/s 51
63
Thermal Shock Resistance, points 6.2 to 13
16 to 17

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 3.5 to 5.0
0 to 0.2
Iron (Fe), % 0
0 to 0.3
Magnesium (Mg), % 0.2 to 0.8
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.2
Silicon (Si), % 0 to 1.2
7.6 to 8.6
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15