MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. ASTM A182 Grade F122

Sintered 2014 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 0.5 to 3.0
23
Fatigue Strength, MPa 52 to 100
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 140 to 290
710
Tensile Strength: Yield (Proof), MPa 97 to 280
450

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 650
1490
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
10
Electrical Conductivity: Equal Weight (Specific), % IACS 100
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
140
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 13 to 27
25
Strength to Weight: Bending, points 20 to 33
22
Thermal Diffusivity, mm2/s 51
6.4
Thermal Shock Resistance, points 6.2 to 13
19

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 3.5 to 5.0
0.3 to 1.7
Iron (Fe), % 0
81.3 to 87.7
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 1.5
0