MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. AWS E349

Sintered 2014 aluminum belongs to the aluminum alloys classification, while AWS E349 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is AWS E349.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 0.5 to 3.0
29
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 140 to 290
770

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.9
Embodied Energy, MJ/kg 150
72
Embodied Water, L/kg 1150
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 13 to 27
27
Strength to Weight: Bending, points 20 to 33
24
Thermal Diffusivity, mm2/s 51
4.1
Thermal Shock Resistance, points 6.2 to 13
20

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 3.5 to 5.0
0 to 0.75
Iron (Fe), % 0
60.5 to 71.1
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
0.35 to 0.65
Nickel (Ni), % 0
8.0 to 10
Niobium (Nb), % 0
0.75 to 1.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0
1.3 to 1.8
Vanadium (V), % 0
0.1 to 0.3
Residuals, % 0 to 1.5
0