MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. EN 1.4523 Stainless Steel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while EN 1.4523 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is EN 1.4523 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 0.5 to 3.0
17
Fatigue Strength, MPa 52 to 100
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 140 to 290
520
Tensile Strength: Yield (Proof), MPa 97 to 280
320

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
77
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 13 to 27
18
Strength to Weight: Bending, points 20 to 33
18
Thermal Diffusivity, mm2/s 51
5.8
Thermal Shock Resistance, points 6.2 to 13
18

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0 to 0.040
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Copper (Cu), % 3.5 to 5.0
0
Iron (Fe), % 0
75.7 to 80.2
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
2.0 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.2
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0
0.15 to 0.8
Residuals, % 0 to 1.5
0