MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. EN 1.4859 Stainless Steel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 0.5 to 3.0
23
Fatigue Strength, MPa 52 to 100
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 140 to 290
490
Tensile Strength: Yield (Proof), MPa 97 to 280
210

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 560
1360
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.2
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
91
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 13 to 27
17
Strength to Weight: Bending, points 20 to 33
17
Thermal Diffusivity, mm2/s 51
3.4
Thermal Shock Resistance, points 6.2 to 13
11

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 3.5 to 5.0
0
Iron (Fe), % 0
40.3 to 49
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.2
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.5
0