MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. EN 2.4650 Nickel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 0.5 to 3.0
34
Fatigue Strength, MPa 52 to 100
480
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 140 to 290
1090
Tensile Strength: Yield (Proof), MPa 97 to 280
650

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 560
1350
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
80
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
320
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
1030
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 13 to 27
36
Strength to Weight: Bending, points 20 to 33
28
Thermal Diffusivity, mm2/s 51
3.1
Thermal Shock Resistance, points 6.2 to 13
33

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 3.5 to 5.0
0 to 0.2
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.2
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Titanium (Ti), % 0
1.9 to 2.4
Residuals, % 0 to 1.5
0