MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. EN AC-41000 Aluminum

Both sintered 2014 aluminum and EN AC-41000 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 0.5 to 3.0
4.5
Fatigue Strength, MPa 52 to 100
58 to 71
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 140 to 290
170 to 280
Tensile Strength: Yield (Proof), MPa 97 to 280
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 560
630
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
38
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 13 to 27
18 to 29
Strength to Weight: Bending, points 20 to 33
26 to 35
Thermal Diffusivity, mm2/s 51
69
Thermal Shock Resistance, points 6.2 to 13
7.8 to 13

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
95.2 to 97.6
Copper (Cu), % 3.5 to 5.0
0 to 0.1
Iron (Fe), % 0
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.2 to 0.8
0.45 to 0.65
Manganese (Mn), % 0
0.3 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 1.2
1.6 to 2.4
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15