MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. EN AC-42200 Aluminum

Both sintered 2014 aluminum and EN AC-42200 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 0.5 to 3.0
3.0 to 6.7
Fatigue Strength, MPa 52 to 100
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 140 to 290
320
Tensile Strength: Yield (Proof), MPa 97 to 280
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 560
600
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
410 to 490
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 13 to 27
34 to 35
Strength to Weight: Bending, points 20 to 33
40 to 41
Thermal Diffusivity, mm2/s 51
66
Thermal Shock Resistance, points 6.2 to 13
15

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
91 to 93.1
Copper (Cu), % 3.5 to 5.0
0 to 0.050
Iron (Fe), % 0
0 to 0.19
Magnesium (Mg), % 0.2 to 0.8
0.45 to 0.7
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0 to 1.2
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1