MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. EN AC-46600 Aluminum

Both sintered 2014 aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 0.5 to 3.0
1.1
Fatigue Strength, MPa 52 to 100
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 140 to 290
180
Tensile Strength: Yield (Proof), MPa 97 to 280
110

Thermal Properties

Latent Heat of Fusion, J/g 390
490
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 560
560
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
29
Electrical Conductivity: Equal Weight (Specific), % IACS 100
94

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
81
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 13 to 27
18
Strength to Weight: Bending, points 20 to 33
25
Thermal Diffusivity, mm2/s 51
51
Thermal Shock Resistance, points 6.2 to 13
8.1

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
85.6 to 92.4
Copper (Cu), % 3.5 to 5.0
1.5 to 2.5
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.2 to 0.8
0 to 0.35
Manganese (Mn), % 0
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 1.2
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.15