MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. CC767S Brass

Sintered 2014 aluminum belongs to the aluminum alloys classification, while CC767S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 0.5 to 3.0
34
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 140 to 290
430
Tensile Strength: Yield (Proof), MPa 97 to 280
150

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 650
840
Melting Onset (Solidus), °C 560
790
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
32
Electrical Conductivity: Equal Weight (Specific), % IACS 100
36

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
110
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
100
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 13 to 27
15
Strength to Weight: Bending, points 20 to 33
16
Thermal Diffusivity, mm2/s 51
34
Thermal Shock Resistance, points 6.2 to 13
14

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0.1 to 0.8
Copper (Cu), % 3.5 to 5.0
58 to 64
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0 to 1.2
0 to 0.2
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
32.8 to 41.9
Residuals, % 0 to 1.5
0