MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. Grade CX2MW Nickel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while grade CX2MW nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 0.5 to 3.0
34
Fatigue Strength, MPa 52 to 100
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 140 to 290
620
Tensile Strength: Yield (Proof), MPa 97 to 280
350

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1550
Melting Onset (Solidus), °C 560
1490
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.0
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
180
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 13 to 27
19
Strength to Weight: Bending, points 20 to 33
18
Thermal Diffusivity, mm2/s 51
2.7
Thermal Shock Resistance, points 6.2 to 13
17

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Copper (Cu), % 3.5 to 5.0
0
Iron (Fe), % 0
2.0 to 6.0
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 1.2
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Residuals, % 0 to 1.5
0