MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. Nickel 684

Sintered 2014 aluminum belongs to the aluminum alloys classification, while nickel 684 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 0.5 to 3.0
11
Fatigue Strength, MPa 52 to 100
390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 140 to 290
1190
Tensile Strength: Yield (Proof), MPa 97 to 280
800

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 560
1320
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
120
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
1610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 13 to 27
40
Strength to Weight: Bending, points 20 to 33
30
Thermal Shock Resistance, points 6.2 to 13
34

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
2.5 to 3.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 3.5 to 5.0
0 to 0.15
Iron (Fe), % 0
0 to 4.0
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
42.7 to 64
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 1.2
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
2.5 to 3.3
Residuals, % 0 to 1.5
0