MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. Nickel 890

Sintered 2014 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 0.5 to 3.0
39
Fatigue Strength, MPa 52 to 100
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 140 to 290
590
Tensile Strength: Yield (Proof), MPa 97 to 280
230

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
47
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
180
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 13 to 27
20
Strength to Weight: Bending, points 20 to 33
19
Thermal Shock Resistance, points 6.2 to 13
15

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 3.5 to 5.0
0 to 0.75
Iron (Fe), % 0
17.3 to 33.9
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 1.2
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6
Residuals, % 0 to 1.5
0