MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. SAE-AISI O7 Steel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while SAE-AISI O7 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is SAE-AISI O7 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 140 to 290
680 to 2110

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.0
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1150
52

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 13 to 27
24 to 74
Strength to Weight: Bending, points 20 to 33
22 to 46
Thermal Diffusivity, mm2/s 51
11
Thermal Shock Resistance, points 6.2 to 13
23 to 70

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
1.1 to 1.3
Chromium (Cr), % 0
0.35 to 0.85
Copper (Cu), % 3.5 to 5.0
0 to 0.25
Iron (Fe), % 0
92.9 to 97.6
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 1.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
1.0 to 2.0
Vanadium (V), % 0
0 to 0.4
Residuals, % 0 to 1.5
0