MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. Titanium 15-3-3-3

Sintered 2014 aluminum belongs to the aluminum alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 0.5 to 3.0
5.7 to 8.0
Fatigue Strength, MPa 52 to 100
610 to 710
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 140 to 290
1120 to 1390
Tensile Strength: Yield (Proof), MPa 97 to 280
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 650
1620
Melting Onset (Solidus), °C 560
1560
Specific Heat Capacity, J/kg-K 880
520
Thermal Conductivity, W/m-K 130
8.1
Thermal Expansion, µm/m-K 23
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
40
Density, g/cm3 2.9
4.8
Embodied Carbon, kg CO2/kg material 8.0
59
Embodied Energy, MJ/kg 150
950
Embodied Water, L/kg 1150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
78 to 89
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 47
32
Strength to Weight: Axial, points 13 to 27
64 to 80
Strength to Weight: Bending, points 20 to 33
50 to 57
Thermal Diffusivity, mm2/s 51
3.2
Thermal Shock Resistance, points 6.2 to 13
79 to 98

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
2.5 to 3.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.5 to 3.5
Copper (Cu), % 3.5 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.25
Magnesium (Mg), % 0.2 to 0.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0 to 1.2
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4