MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. N10665 Nickel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while N10665 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is N10665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 0.5 to 3.0
45
Fatigue Strength, MPa 52 to 100
340
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 140 to 290
860
Tensile Strength: Yield (Proof), MPa 97 to 280
400

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 650
1620
Melting Onset (Solidus), °C 560
1570
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.9
9.3
Embodied Carbon, kg CO2/kg material 8.0
15
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
320
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
22
Strength to Weight: Axial, points 13 to 27
26
Strength to Weight: Bending, points 20 to 33
22
Thermal Diffusivity, mm2/s 51
3.1
Thermal Shock Resistance, points 6.2 to 13
27

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.5 to 5.0
0
Iron (Fe), % 0
0 to 2.0
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
64.8 to 74
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.2
0 to 0.1
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.5
0