MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. S21460 Stainless Steel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 0.5 to 3.0
46
Fatigue Strength, MPa 52 to 100
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 140 to 290
830
Tensile Strength: Yield (Proof), MPa 97 to 280
430

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
320
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 13 to 27
30
Strength to Weight: Bending, points 20 to 33
26
Thermal Shock Resistance, points 6.2 to 13
17

Alloy Composition

Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 3.5 to 5.0
0
Iron (Fe), % 0
57.3 to 63.7
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.5
0