MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. 7204 Aluminum

Both sintered 6061 aluminum and 7204 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 0.5 to 6.0
11 to 13
Fatigue Strength, MPa 32 to 62
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 83 to 210
220 to 380
Tensile Strength: Yield (Proof), MPa 62 to 190
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 610
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 200
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
39
Electrical Conductivity: Equal Weight (Specific), % IACS 170
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
110 to 710
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
47
Strength to Weight: Axial, points 8.6 to 21
21 to 36
Strength to Weight: Bending, points 16 to 29
28 to 40
Thermal Diffusivity, mm2/s 81
58
Thermal Shock Resistance, points 3.8 to 9.4
9.4 to 16

Alloy Composition

Aluminum (Al), % 96 to 99.4
90.5 to 94.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 0
0 to 0.35
Magnesium (Mg), % 0.4 to 1.2
1.0 to 2.0
Manganese (Mn), % 0
0.2 to 0.7
Silicon (Si), % 0.2 to 0.8
0 to 0.3
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants