MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. AISI 310HCb Stainless Steel

Sintered 6061 aluminum belongs to the aluminum alloys classification, while AISI 310HCb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 0.5 to 6.0
46
Fatigue Strength, MPa 32 to 62
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 83 to 210
590
Tensile Strength: Yield (Proof), MPa 62 to 190
230

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 610
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.8
Embodied Energy, MJ/kg 150
69
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
210
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 8.6 to 21
21
Strength to Weight: Bending, points 16 to 29
20
Thermal Diffusivity, mm2/s 81
3.9
Thermal Shock Resistance, points 3.8 to 9.4
13

Alloy Composition

Aluminum (Al), % 96 to 99.4
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0
48 to 57
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.5
0