MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. AISI 415 Stainless Steel

Sintered 6061 aluminum belongs to the aluminum alloys classification, while AISI 415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 0.5 to 6.0
17
Fatigue Strength, MPa 32 to 62
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 83 to 210
900
Tensile Strength: Yield (Proof), MPa 62 to 190
700

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
24
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 170
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
140
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
1250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 8.6 to 21
32
Strength to Weight: Bending, points 16 to 29
26
Thermal Diffusivity, mm2/s 81
6.4
Thermal Shock Resistance, points 3.8 to 9.4
33

Alloy Composition

Aluminum (Al), % 96 to 99.4
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0
77.8 to 84
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.5
0