MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. EN 1.7383 Steel

Sintered 6061 aluminum belongs to the aluminum alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 0.5 to 6.0
20 to 23
Fatigue Strength, MPa 32 to 62
210 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
74
Tensile Strength: Ultimate (UTS), MPa 83 to 210
560 to 610
Tensile Strength: Yield (Proof), MPa 62 to 190
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.9
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
240 to 420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 8.6 to 21
20 to 22
Strength to Weight: Bending, points 16 to 29
19 to 20
Thermal Diffusivity, mm2/s 81
11
Thermal Shock Resistance, points 3.8 to 9.4
16 to 18

Alloy Composition

Aluminum (Al), % 96 to 99.4
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 0
94.3 to 96.6
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 1.5
0

Comparable Variants