MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. EN AC-43400 Aluminum

Both sintered 6061 aluminum and EN AC-43400 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 0.5 to 6.0
1.1
Fatigue Strength, MPa 32 to 62
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 83 to 210
270
Tensile Strength: Yield (Proof), MPa 62 to 190
160

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 610
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 200
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
32
Electrical Conductivity: Equal Weight (Specific), % IACS 170
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
54
Strength to Weight: Axial, points 8.6 to 21
29
Strength to Weight: Bending, points 16 to 29
36
Thermal Diffusivity, mm2/s 81
59
Thermal Shock Resistance, points 3.8 to 9.4
12

Alloy Composition

Aluminum (Al), % 96 to 99.4
86 to 90.8
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.4 to 1.2
0.2 to 0.5
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0.2 to 0.8
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15