MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. EN AC-48000 Aluminum

Both sintered 6061 aluminum and EN AC-48000 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 0.5 to 6.0
1.0
Fatigue Strength, MPa 32 to 62
85 to 86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
28
Tensile Strength: Ultimate (UTS), MPa 83 to 210
220 to 310
Tensile Strength: Yield (Proof), MPa 62 to 190
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 200
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
33
Electrical Conductivity: Equal Weight (Specific), % IACS 170
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 8.6 to 21
23 to 33
Strength to Weight: Bending, points 16 to 29
31 to 39
Thermal Diffusivity, mm2/s 81
54
Thermal Shock Resistance, points 3.8 to 9.4
10 to 15

Alloy Composition

Aluminum (Al), % 96 to 99.4
80.4 to 87.2
Copper (Cu), % 0 to 0.5
0.8 to 1.5
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 0.4 to 1.2
0.8 to 1.5
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0
0.7 to 1.3
Silicon (Si), % 0.2 to 0.8
10.5 to 13.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15

Comparable Variants