MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. SAE-AISI 5130 Steel

Sintered 6061 aluminum belongs to the aluminum alloys classification, while SAE-AISI 5130 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is SAE-AISI 5130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 0.5 to 6.0
12 to 22
Fatigue Strength, MPa 32 to 62
230 to 330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 83 to 210
500 to 640
Tensile Strength: Yield (Proof), MPa 62 to 190
330 to 530

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
45
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
74 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
290 to 750
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 8.6 to 21
18 to 23
Strength to Weight: Bending, points 16 to 29
18 to 21
Thermal Diffusivity, mm2/s 81
12
Thermal Shock Resistance, points 3.8 to 9.4
16 to 20

Alloy Composition

Aluminum (Al), % 96 to 99.4
0
Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0
97.2 to 98.1
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
0.7 to 0.9
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.8
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 1.5
0

Comparable Variants