MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. C42600 Brass

Sintered 6061 aluminum belongs to the aluminum alloys classification, while C42600 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 0.5 to 6.0
1.1 to 40
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
42
Tensile Strength: Ultimate (UTS), MPa 83 to 210
410 to 830
Tensile Strength: Yield (Proof), MPa 62 to 190
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
1030
Melting Onset (Solidus), °C 610
1010
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 200
110
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
25
Electrical Conductivity: Equal Weight (Specific), % IACS 170
26

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 8.6 to 21
13 to 27
Strength to Weight: Bending, points 16 to 29
14 to 23
Thermal Diffusivity, mm2/s 81
33
Thermal Shock Resistance, points 3.8 to 9.4
15 to 29

Alloy Composition

Aluminum (Al), % 96 to 99.4
0
Copper (Cu), % 0 to 0.5
87 to 90
Iron (Fe), % 0
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.4 to 1.2
0
Nickel (Ni), % 0
0.050 to 0.2
Phosphorus (P), % 0
0.020 to 0.050
Silicon (Si), % 0.2 to 0.8
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2

Comparable Variants