MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. N06007 Nickel

Sintered 6061 aluminum belongs to the aluminum alloys classification, while N06007 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 0.5 to 6.0
38
Fatigue Strength, MPa 32 to 62
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 83 to 210
690
Tensile Strength: Yield (Proof), MPa 62 to 190
260

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 610
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 200
10
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
200
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 8.6 to 21
23
Strength to Weight: Bending, points 16 to 29
21
Thermal Diffusivity, mm2/s 81
2.7
Thermal Shock Resistance, points 3.8 to 9.4
18

Alloy Composition

Aluminum (Al), % 96 to 99.4
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.5
1.5 to 2.5
Iron (Fe), % 0
18 to 21
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Residuals, % 0 to 1.5
0