MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. N07752 Nickel

Sintered 6061 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 0.5 to 6.0
22
Fatigue Strength, MPa 32 to 62
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 83 to 210
1120
Tensile Strength: Yield (Proof), MPa 62 to 190
740

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 610
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 200
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 170
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
220
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
1450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 8.6 to 21
37
Strength to Weight: Bending, points 16 to 29
29
Thermal Diffusivity, mm2/s 81
3.2
Thermal Shock Resistance, points 3.8 to 9.4
34

Alloy Composition

Aluminum (Al), % 96 to 99.4
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.5
0 to 0.5
Iron (Fe), % 0
5.0 to 9.0
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0.2 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 1.5
0