MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. S45500 Stainless Steel

Sintered 6061 aluminum belongs to the aluminum alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 0.5 to 6.0
3.4 to 11
Fatigue Strength, MPa 32 to 62
570 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 83 to 210
1370 to 1850
Tensile Strength: Yield (Proof), MPa 62 to 190
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.8
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
45 to 190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 8.6 to 21
48 to 65
Strength to Weight: Bending, points 16 to 29
35 to 42
Thermal Shock Resistance, points 3.8 to 9.4
48 to 64

Alloy Composition

Aluminum (Al), % 96 to 99.4
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.5
1.5 to 2.5
Iron (Fe), % 0
71.5 to 79.2
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.8 to 1.4
Residuals, % 0 to 1.5
0

Comparable Variants