MakeItFrom.com
Menu (ESC)

H08 C19400 Copper vs. H08 C52400 Bronze

Both H08 C19400 copper and H08 C52400 bronze are copper alloys. Both are furnished in the H08 (spring) temper. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H08 C19400 copper and the bottom bar is H08 C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.3
3.0
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 76
100
Rockwell Superficial 30T Hardness 70
83
Shear Modulus, GPa 44
41
Shear Strength, MPa 290
480
Tensile Strength: Ultimate (UTS), MPa 500
840

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
1000
Melting Onset (Solidus), °C 1080
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 260
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 67
11
Electrical Conductivity: Equal Weight (Specific), % IACS 68
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
35
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 40
58
Embodied Water, L/kg 300
390

Common Calculations

Stiffness to Weight: Axial, points 7.3
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16
27
Strength to Weight: Bending, points 16
23
Thermal Diffusivity, mm2/s 75
15
Thermal Shock Resistance, points 18
31

Alloy Composition

Copper (Cu), % 96.8 to 97.8
87.8 to 91
Iron (Fe), % 2.1 to 2.6
0 to 0.1
Lead (Pb), % 0 to 0.030
0 to 0.050
Phosphorus (P), % 0.015 to 0.15
0.030 to 0.35
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0.050 to 0.2
0 to 0.2
Residuals, % 0
0 to 0.5