MakeItFrom.com
Menu (ESC)

H08 C70600 Copper-nickel vs. H08 C72800 Copper-nickel

Both H08 C70600 copper-nickel and H08 C72800 copper-nickel are copper alloys. Both are furnished in the H08 (spring) temper. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is H08 C70600 copper-nickel and the bottom bar is H08 C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 3.0
3.9
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 46
44
Shear Strength, MPa 330
550
Tensile Strength: Ultimate (UTS), MPa 570
960
Tensile Strength: Yield (Proof), MPa 79
910

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1150
1080
Melting Onset (Solidus), °C 1100
920
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 44
55
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
11
Electrical Conductivity: Equal Weight (Specific), % IACS 9.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 33
38
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 3.4
4.4
Embodied Energy, MJ/kg 51
68
Embodied Water, L/kg 300
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
37
Resilience: Unit (Modulus of Resilience), kJ/m3 25
3530
Stiffness to Weight: Axial, points 7.7
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18
30
Strength to Weight: Bending, points 17
25
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 19
34

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Copper (Cu), % 84.7 to 90
78.3 to 82.8
Iron (Fe), % 1.0 to 1.8
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Nickel (Ni), % 9.0 to 11
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 0 to 1.0
0 to 1.0
Residuals, % 0
0 to 0.3