MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. 4045 Aluminum

Titanium 15-3-3-3 belongs to the titanium alloys classification, while 4045 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is 4045 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 5.7 to 8.0
2.3
Fatigue Strength, MPa 610 to 710
45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 39
27
Shear Strength, MPa 660 to 810
69
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
120
Tensile Strength: Yield (Proof), MPa 1100 to 1340
64

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1620
600
Melting Onset (Solidus), °C 1560
580
Specific Heat Capacity, J/kg-K 520
900
Thermal Conductivity, W/m-K 8.1
170
Thermal Expansion, µm/m-K 9.8
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
160

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 4.8
2.6
Embodied Carbon, kg CO2/kg material 59
7.8
Embodied Energy, MJ/kg 950
150
Embodied Water, L/kg 260
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
2.4
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 32
54
Strength to Weight: Axial, points 64 to 80
13
Strength to Weight: Bending, points 50 to 57
21
Thermal Diffusivity, mm2/s 3.2
74
Thermal Shock Resistance, points 79 to 98
5.7

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
87.4 to 91
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.5 to 3.5
0
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
9.0 to 11
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0 to 0.2
Vanadium (V), % 14 to 16
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15