MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. 5082 Aluminum

Titanium 15-3-3-3 belongs to the titanium alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
67
Elongation at Break, % 5.7 to 8.0
1.1
Fatigue Strength, MPa 610 to 710
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 39
25
Shear Strength, MPa 660 to 810
210 to 230
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
380 to 400
Tensile Strength: Yield (Proof), MPa 1100 to 1340
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 430
180
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1560
560
Specific Heat Capacity, J/kg-K 520
910
Thermal Conductivity, W/m-K 8.1
130
Thermal Expansion, µm/m-K 9.8
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 4.8
2.7
Embodied Carbon, kg CO2/kg material 59
8.9
Embodied Energy, MJ/kg 950
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
4.0 to 4.3
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
51
Strength to Weight: Axial, points 64 to 80
39 to 41
Strength to Weight: Bending, points 50 to 57
43 to 45
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 79 to 98
17 to 18

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
93.5 to 96
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.5 to 3.5
0 to 0.15
Copper (Cu), % 0
0 to 0.15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0
0 to 0.15
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0 to 0.1
Vanadium (V), % 14 to 16
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15