MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. 5252 Aluminum

Titanium 15-3-3-3 belongs to the titanium alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 5.7 to 8.0
4.5 to 11
Fatigue Strength, MPa 610 to 710
100 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 39
25
Shear Strength, MPa 660 to 810
140 to 160
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
230 to 290
Tensile Strength: Yield (Proof), MPa 1100 to 1340
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 430
180
Melting Completion (Liquidus), °C 1620
650
Melting Onset (Solidus), °C 1560
610
Specific Heat Capacity, J/kg-K 520
910
Thermal Conductivity, W/m-K 8.1
140
Thermal Expansion, µm/m-K 9.8
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 4.8
2.7
Embodied Carbon, kg CO2/kg material 59
8.7
Embodied Energy, MJ/kg 950
160
Embodied Water, L/kg 260
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
12 to 23
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
51
Strength to Weight: Axial, points 64 to 80
23 to 30
Strength to Weight: Bending, points 50 to 57
31 to 36
Thermal Diffusivity, mm2/s 3.2
57
Thermal Shock Resistance, points 79 to 98
10 to 13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
96.6 to 97.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.5 to 3.5
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.080
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1