Titanium 15-3-3-3 vs. AISI 201L Stainless Steel
Titanium 15-3-3-3 belongs to the titanium alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is AISI 201L stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
200 |
Elongation at Break, % | 5.7 to 8.0 | |
22 to 46 |
Fatigue Strength, MPa | 610 to 710 | |
270 to 530 |
Poisson's Ratio | 0.33 | |
0.28 |
Shear Modulus, GPa | 39 | |
77 |
Shear Strength, MPa | 660 to 810 | |
520 to 660 |
Tensile Strength: Ultimate (UTS), MPa | 1120 to 1390 | |
740 to 1040 |
Tensile Strength: Yield (Proof), MPa | 1100 to 1340 | |
290 to 790 |
Thermal Properties
Latent Heat of Fusion, J/g | 390 | |
280 |
Maximum Temperature: Mechanical, °C | 430 | |
880 |
Melting Completion (Liquidus), °C | 1620 | |
1410 |
Melting Onset (Solidus), °C | 1560 | |
1370 |
Specific Heat Capacity, J/kg-K | 520 | |
480 |
Thermal Conductivity, W/m-K | 8.1 | |
15 |
Thermal Expansion, µm/m-K | 9.8 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.2 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.3 | |
2.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 40 | |
12 |
Density, g/cm3 | 4.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 59 | |
2.6 |
Embodied Energy, MJ/kg | 950 | |
38 |
Embodied Water, L/kg | 260 | |
140 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 78 to 89 | |
210 to 300 |
Stiffness to Weight: Axial, points | 12 | |
14 |
Stiffness to Weight: Bending, points | 32 | |
25 |
Strength to Weight: Axial, points | 64 to 80 | |
27 to 37 |
Strength to Weight: Bending, points | 50 to 57 | |
24 to 30 |
Thermal Diffusivity, mm2/s | 3.2 | |
4.0 |
Thermal Shock Resistance, points | 79 to 98 | |
16 to 23 |
Alloy Composition
Aluminum (Al), % | 2.5 to 3.5 | |
0 |
Carbon (C), % | 0 to 0.050 | |
0 to 0.030 |
Chromium (Cr), % | 2.5 to 3.5 | |
16 to 18 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.25 | |
67.9 to 75 |
Manganese (Mn), % | 0 | |
5.5 to 7.5 |
Nickel (Ni), % | 0 | |
3.5 to 5.5 |
Nitrogen (N), % | 0 to 0.050 | |
0 to 0.25 |
Oxygen (O), % | 0 to 0.13 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.045 |
Silicon (Si), % | 0 | |
0 to 0.75 |
Sulfur (S), % | 0 | |
0 to 0.030 |
Tin (Sn), % | 2.5 to 3.5 | |
0 |
Titanium (Ti), % | 72.6 to 78.5 | |
0 |
Vanadium (V), % | 14 to 16 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |