MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. AISI 309Cb Stainless Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while AISI 309Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is AISI 309Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.7 to 8.0
39
Fatigue Strength, MPa 610 to 710
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
78
Shear Strength, MPa 660 to 810
390
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
580
Tensile Strength: Yield (Proof), MPa 1100 to 1340
230

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 430
1090
Melting Completion (Liquidus), °C 1620
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 520
480
Thermal Conductivity, W/m-K 8.1
15
Thermal Expansion, µm/m-K 9.8
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 40
23
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
4.1
Embodied Energy, MJ/kg 950
59
Embodied Water, L/kg 260
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
180
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 64 to 80
20
Strength to Weight: Bending, points 50 to 57
20
Thermal Diffusivity, mm2/s 3.2
4.0
Thermal Shock Resistance, points 79 to 98
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 2.5 to 3.5
22 to 24
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
56 to 66
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
12 to 16
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0