MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. ASTM A182 Grade F3V

Titanium 15-3-3-3 belongs to the titanium alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
20
Fatigue Strength, MPa 610 to 710
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
74
Shear Strength, MPa 660 to 810
410
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
660
Tensile Strength: Yield (Proof), MPa 1100 to 1340
470

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 430
470
Melting Completion (Liquidus), °C 1620
1470
Melting Onset (Solidus), °C 1560
1430
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
39
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 40
4.2
Density, g/cm3 4.8
7.9
Embodied Carbon, kg CO2/kg material 59
2.3
Embodied Energy, MJ/kg 950
33
Embodied Water, L/kg 260
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
120
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
23
Strength to Weight: Bending, points 50 to 57
21
Thermal Diffusivity, mm2/s 3.2
10
Thermal Shock Resistance, points 79 to 98
19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0 to 0.050
0.050 to 0.18
Chromium (Cr), % 2.5 to 3.5
2.8 to 3.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
94.4 to 95.7
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0.015 to 0.035
Vanadium (V), % 14 to 16
0.2 to 0.3
Residuals, % 0 to 0.4
0