MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. ASTM A369 Grade FP91

Titanium 15-3-3-3 belongs to the titanium alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
19
Fatigue Strength, MPa 610 to 710
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 660 to 810
410
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
670
Tensile Strength: Yield (Proof), MPa 1100 to 1340
460

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 430
600
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
26
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 40
7.0
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
2.6
Embodied Energy, MJ/kg 950
37
Embodied Water, L/kg 260
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
110
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 64 to 80
24
Strength to Weight: Bending, points 50 to 57
22
Thermal Diffusivity, mm2/s 3.2
6.9
Thermal Shock Resistance, points 79 to 98
18

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.020
Carbon (C), % 0 to 0.050
0.080 to 0.12
Chromium (Cr), % 2.5 to 3.5
8.0 to 9.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
87.3 to 90.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0 to 0.050
0.030 to 0.070
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0 to 0.010
Vanadium (V), % 14 to 16
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.4
0