MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. ASTM A387 Grade 21L Class 1

Titanium 15-3-3-3 belongs to the titanium alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
21
Fatigue Strength, MPa 610 to 710
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
74
Shear Strength, MPa 660 to 810
310
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
500
Tensile Strength: Yield (Proof), MPa 1100 to 1340
230

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 430
480
Melting Completion (Liquidus), °C 1620
1470
Melting Onset (Solidus), °C 1560
1430
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
41
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 40
4.1
Density, g/cm3 4.8
7.9
Embodied Carbon, kg CO2/kg material 59
1.8
Embodied Energy, MJ/kg 950
23
Embodied Water, L/kg 260
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
84
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
18
Strength to Weight: Bending, points 50 to 57
18
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 79 to 98
14

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 2.5 to 3.5
2.8 to 3.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
94.4 to 96.1
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0