MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. AWS E320

Titanium 15-3-3-3 belongs to the titanium alloys classification, while AWS E320 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.7 to 8.0
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
620

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 1620
1410
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 520
460
Thermal Expansion, µm/m-K 9.8
14

Otherwise Unclassified Properties

Base Metal Price, % relative 40
38
Density, g/cm3 4.8
8.2
Embodied Carbon, kg CO2/kg material 59
6.5
Embodied Energy, MJ/kg 950
91
Embodied Water, L/kg 260
220

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
21
Strength to Weight: Bending, points 50 to 57
20
Thermal Shock Resistance, points 79 to 98
16

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.070
Chromium (Cr), % 2.5 to 3.5
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
31.8 to 43.5
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0