MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. AWS E90C-K3

Titanium 15-3-3-3 belongs to the titanium alloys classification, while AWS E90C-K3 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is AWS E90C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
55
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
710
Tensile Strength: Yield (Proof), MPa 1100 to 1340
600

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
48
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 40
3.4
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
1.7
Embodied Energy, MJ/kg 950
23
Embodied Water, L/kg 260
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
370
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
25
Strength to Weight: Bending, points 50 to 57
22
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 79 to 98
21

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.15
Chromium (Cr), % 2.5 to 3.5
0 to 0.15
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
92.6 to 98.5
Manganese (Mn), % 0
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0 to 0.030
Residuals, % 0
0 to 0.5