MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. EN 1.0456 Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while EN 1.0456 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
24 to 26
Fatigue Strength, MPa 610 to 710
210 to 220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 660 to 810
270 to 280
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
420 to 450
Tensile Strength: Yield (Proof), MPa 1100 to 1340
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 430
400
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
48
Thermal Expansion, µm/m-K 9.8
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 40
2.2
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
1.5
Embodied Energy, MJ/kg 950
20
Embodied Water, L/kg 260
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
93 to 99
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
15 to 16
Strength to Weight: Bending, points 50 to 57
16 to 17
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 79 to 98
13 to 14

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0.020 to 0.060
Carbon (C), % 0 to 0.050
0 to 0.2
Chromium (Cr), % 2.5 to 3.5
0 to 0.3
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
96.7 to 99.48
Manganese (Mn), % 0
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.050
0 to 0.015
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0 to 0.030
Vanadium (V), % 14 to 16
0 to 0.050
Residuals, % 0 to 0.4
0