MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. EN 1.4469 Stainless Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while EN 1.4469 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is EN 1.4469 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 5.7 to 8.0
25
Fatigue Strength, MPa 610 to 710
380
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 39
81
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
740
Tensile Strength: Yield (Proof), MPa 1100 to 1340
550

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1620
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 520
480
Thermal Conductivity, W/m-K 8.1
17
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 40
21
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
4.1
Embodied Energy, MJ/kg 950
57
Embodied Water, L/kg 260
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
170
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 64 to 80
26
Strength to Weight: Bending, points 50 to 57
23
Thermal Diffusivity, mm2/s 3.2
4.6
Thermal Shock Resistance, points 79 to 98
20

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 2.5 to 3.5
25 to 27
Copper (Cu), % 0
0 to 1.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
56.4 to 65.9
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.050
0.12 to 0.22
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0