MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. EN 1.7220 Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while EN 1.7220 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is EN 1.7220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
520 to 1720

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 430
420
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
44
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 40
2.5
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
1.5
Embodied Energy, MJ/kg 950
20
Embodied Water, L/kg 260
51

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
18 to 61
Strength to Weight: Bending, points 50 to 57
18 to 41
Thermal Diffusivity, mm2/s 3.2
12
Thermal Shock Resistance, points 79 to 98
15 to 50

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0.3 to 0.37
Chromium (Cr), % 2.5 to 3.5
0.9 to 1.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
96.8 to 98.1
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.3
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0