MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. C85900 Brass

Titanium 15-3-3-3 belongs to the titanium alloys classification, while C85900 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 5.7 to 8.0
30
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
460
Tensile Strength: Yield (Proof), MPa 1100 to 1340
190

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 430
130
Melting Completion (Liquidus), °C 1620
830
Melting Onset (Solidus), °C 1560
790
Specific Heat Capacity, J/kg-K 520
390
Thermal Conductivity, W/m-K 8.1
89
Thermal Expansion, µm/m-K 9.8
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
28

Otherwise Unclassified Properties

Base Metal Price, % relative 40
24
Density, g/cm3 4.8
8.0
Embodied Carbon, kg CO2/kg material 59
2.9
Embodied Energy, MJ/kg 950
49
Embodied Water, L/kg 260
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
110
Stiffness to Weight: Axial, points 12
7.3
Stiffness to Weight: Bending, points 32
20
Strength to Weight: Axial, points 64 to 80
16
Strength to Weight: Bending, points 50 to 57
17
Thermal Diffusivity, mm2/s 3.2
29
Thermal Shock Resistance, points 79 to 98
16

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.5 to 3.5
0
Copper (Cu), % 0
58 to 62
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 2.5 to 3.5
0 to 1.5
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7