MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. C92900 Bronze

Titanium 15-3-3-3 belongs to the titanium alloys classification, while C92900 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 5.7 to 8.0
9.1
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
350
Tensile Strength: Yield (Proof), MPa 1100 to 1340
190

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1620
1030
Melting Onset (Solidus), °C 1560
860
Specific Heat Capacity, J/kg-K 520
370
Thermal Conductivity, W/m-K 8.1
58
Thermal Expansion, µm/m-K 9.8
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 40
35
Density, g/cm3 4.8
8.8
Embodied Carbon, kg CO2/kg material 59
3.8
Embodied Energy, MJ/kg 950
61
Embodied Water, L/kg 260
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
27
Stiffness to Weight: Axial, points 12
6.8
Stiffness to Weight: Bending, points 32
18
Strength to Weight: Axial, points 64 to 80
11
Strength to Weight: Bending, points 50 to 57
13
Thermal Diffusivity, mm2/s 3.2
18
Thermal Shock Resistance, points 79 to 98
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.5 to 3.5
0
Copper (Cu), % 0
82 to 86
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Nickel (Ni), % 0
2.8 to 4.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 2.5 to 3.5
9.0 to 11
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7