MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. N08926 Stainless Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while N08926 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is N08926 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.7 to 8.0
40
Fatigue Strength, MPa 610 to 710
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
80
Shear Strength, MPa 660 to 810
500
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
740
Tensile Strength: Yield (Proof), MPa 1100 to 1340
330

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 520
460
Thermal Conductivity, W/m-K 8.1
12
Thermal Expansion, µm/m-K 9.8
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
33
Density, g/cm3 4.8
8.1
Embodied Carbon, kg CO2/kg material 59
6.2
Embodied Energy, MJ/kg 950
84
Embodied Water, L/kg 260
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
240
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
25
Strength to Weight: Bending, points 50 to 57
22
Thermal Diffusivity, mm2/s 3.2
3.2
Thermal Shock Resistance, points 79 to 98
16

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.020
Chromium (Cr), % 2.5 to 3.5
19 to 21
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
41.7 to 50.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0 to 0.050
0.15 to 0.25
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0